Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

TitleComprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.
Publication TypeJournal Article
Year of Publication2015
AuthorsEdlefsen PT, Rolland M, Hertz T, Tovanabutra S, Gartland AJ, DeCamp AC, Magaret CA, Ahmed H, Gottardo R, Juraska M, McCoy C, Larsen BB, Sanders-Buell E, Carrico C, Menis S, Bose M, Arroyo MA, O'Connell RJ, Nitayaphan S, Pitisuttithum P, Kaewkungwal J, Rerks-Ngarm S, Robb ML, Kirys T, Georgiev IS, Kwong PD, Scheffler K, Pond SLKosakovs, Carlson JM, Michael NL, Schief WR, Mullins JI, Kim JH, Gilbert PB
Corporate AuthorsRV144 Sequencing Team
JournalPLoS Comput Biol
Volume11
Issue2
Paginatione1003973
Date Published02/03/2015
ISSN1553-7358
Abstract

The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.

DOI10.1371/journal.pcbi.1003973
Alternate JournalPLoS Comput. Biol.
PubMed ID25646817
PubMed Central IDPMC4315437
Grant List2R37AI05465-11 / AI / NIAID NIH HHS / United States
UM1 AI100663 / AI / NIAID NIH HHS / United States
Y1-AI-2642-12 / AI / NIAID NIH HHS / United States
CHAVI-ID: 
1
Cover Picture: