Promiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV.

TitlePromiscuous Glycan Site Recognition by Antibodies to the High-Mannose Patch of gp120 Broadens Neutralization of HIV.
Publication TypeJournal Article
Year of Publication2014
AuthorsSok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL, Ramos A, Kulp DW, Julien J-P, Menis S, Wickramasinghe L, Seaman MS, Schief WR, Wilson IA, Poignard P, Burton DR
JournalSci Transl Med
Date Published05/14/2014

Broadly neutralizing monoclonal antibodies (bnmAbs) that target the high-mannose patch centered around the glycan at position 332 on HIV Env are promising vaccine leads and therapeutic candidates because they effectively protect against mucosal SHIV challenge and strongly suppress SHIV viremia in established infection in macaque models. However, these antibodies demonstrate varying degrees of dependency on the N332 glycan site, and the origins of their neutralization breadth are not always obvious. By measuring neutralization on an extended range of glycan site viral variants, we found that some bnmAbs can use alternate N-linked glycans in the absence of the N332 glycan site and therefore neutralize a substantial number of viruses lacking the site. Furthermore, many of the antibodies can neutralize viruses in which the N332 glycan site is shifted to the 334 position. Finally, we found that a combination of three antibody families that target the high-mannose patch can lead to 99% neutralization coverage of a large panel of viruses containing the N332/N334 glycan site and up to 66% coverage for viruses that lack the N332/N334 glycan site. The results indicate that a diverse response against the high-mannose patch may provide near-equivalent coverage as a combination of bnmAbs targeting multiple epitopes. Additionally, the ability of some bnmAbs to use other N-linked glycan sites can help counter neutralization escape mediated by shifting of glycosylation sites. Overall, this work highlights the importance of promiscuous glycan binding properties in bnmAbs to the high-mannose patch for optimal antiviral activity in either protective or therapeutic modalities.

Alternate JournalSci Transl Med
PubMed ID24828077
Grant ListR37 AI055332 / AI / NIAID NIH HHS / United States
UM1 AI100663 / AI / NIAID NIH HHS / United States
Cover Picture: